ELSEVIER

Contents lists available at ScienceDirect

Journal of Nuclear Materials

Experimental plan and design of two experiments for graphite

Contents

Proceedings of the Seventh and Eighth International Graphite Specialists Meetings (INGSM)

Failure analysis of the effects of porosity in thermally oxidised nuclear graphite using finite element modelling. C. Berre, S.L. Fok, P.M. Mummery, J. Ali, B.J. Marsden, T.J. Marrow and G.B. Neighbour Comparison of the oxidation rate and degree of graphitization of selected IG and NBG nuclear graphite grades, SH. Chi and GC. Kim Practical aspects for characterizing air oxidation of graphite. C.L. Contescu, S. Azad, D. Miller, M.J. Lance, F.S. Boker and T.D. Burchell aspects for characterizing air oxidation of graphite. C.L. Contescu, S. Azad, D. Miller, M.J. Lance, F.S. Boker and T.D. Burchell and O. Miller, M.J. Lance, F.S. Boker and T.D. Burchell and O. Miller, M.J. Lance, F.S. Boker and T.D. Burchell and M.P. Trammell Section 2. Irradiation behavior of graphite A revised description of graphite irradiation induced creep, M.A. Davies and M. Bradford Irradiation induced creep behavior of H-451 graphite, T.D. Burchell and Y. Katoh Dimensional and material property changes to irradiated Gisocarbon graphite irradiation tensile or the prediction of stresses in irradiated in inert environments, E.D. Esson, C.N. Hall, B.J. Marsden and G.B. Heys material model for Gisocarbon graphite irradiation tensile or the prediction of stresses in irradiated anisotropic graphite components, D.K.L. Tsang and B.J. Marsden and G.B. Heys material model for Gisocarbon graphite irradiation tensile or the prediction of a revised anisotropic graphite components, D.K.L. Tsang and B.J. Marsden and G.B. Heys materials and G.S. Section 3. Modeling and characterization of neteroseness graphite structure Application of a micromechanics model to the overall properties of heterogeneous graphite, C. Berre, P.M. Mummery, B.J. Marsden, T.J. Marrow and B.J. Marsden and G.B. Heys materials and P.J. Withers Constitutive material model for the prediction of stresses in irradiated anisotropic graphite extructure and G.B. Heys materials and G.S. Section 3. Modeling and characterization of inclear graphite structure A structurally-based model of	Section 1. Graphite oxidation and HTGR fuel		irradiation at temperatures up to 1500 °C in the target region of the high flux isotope reactor, J.L. McDuffee, T.D. Burchell, D.W. Heatherly and K.R. Thoms	114
Comparison of the oxidation rate and degree of graphitization of selected IG and NBG nuclear graphite grades, SH. Chi and GC. Kim Practical aspects for characterizing air oxidation of graphite, C.I. Contescu, S. Azad, D. Miller, M.J. Lance, F.S. Baker and T.D. Burchell A novel approach to fabricating fuel compacts for the next generation nuclear plant (NGNP), P.J. Pappano, T.D. Burchell, J.D. Hunn and M.P. Trammell A revised description of graphite A revised description of graphite irradiation induced creep, M.A. Davies and M. Bradford Irradiation induced creep behavior of H-451 graphite, T.D. Burchell Swelling of nuclear graphite and high quality carbon fiber composite under very high irradiation temperature, L.L. Snead, T.D. Burchell and Y. Katoh Dimensional and material property changes to irradiated Gilsocarbon graphite irradiation testing for HTR technology at the High Flux Reactor in Petten, J.A. Vreeling, and J. van der Laan Accumulation of thermal resistance in neutron irradiated graphite materials, L.L. Snead Application of a micromechanics model to the overall properties of heterogeneous graphite, C. Berre, P.M. Mummery, B.J. Marsden, T. Mori and P.J. Withers Constitutive material model for the prediction of stresses in irradiated anisotropic graphite components, D.K.L. Tsang and B.J. Marsden and G.B. Hys Marsden and G.B. Hys Burdsden, C.B. Hall, M. Joyce, A. Hodgkins, K. Wen, T.J. Marrow and B.J. Marsden and G.B. Hys J. Winders and G.B. Hys J. Winders and G.B. Hys J. Winders and G.B. Hys Marsden, T. Mori and P.J. Withers Section 4. Non-destructive graphite testing methods and fracture for evaluating fracture toughness of graphite materials, JA.J. Wang and K.C. Liun. M.E. J. Sand, D. Miller, M.J. Lance, F.S. Baker and T.D. Burchell and J. Katoh T. Mori and P.J. Withers Constitutive material model for the prediction of stresses in irradiated anisotropic graphite components, D. M.R. M.R. Burdgerd and A.G. Steer Development of a Voung's modulus model for Gilsocarbon graphite irradiated	nuclear graphite using finite element modelling, C. Berre,			119
Practical aspects for characterizing air oxidation of graphite, C.D. Contescu, S. Azad, D. Miller, M.J. Lance, F.S. Baker and T.D. Burchell A novel approach to fabricating fuel compacts for the next generation nuclear plant (NGNP), P.J. Pappano, T.D. Burchell, J.D. Hunn and M.P. Trammell Section 2. Irradiation behavior of graphite A revised description of graphite irradiation induced creep, M.A. Davies and M. Bradford A M. Bradford and A.G. Steer Development of a Young's modulus model for Gilsocarbon graphites irradiated induced creep, behavior of H-451 graphite, T.D. Burchell and Y. Katoh Dimensional and material property changes to irradiated Gilsocarbon graphite irradiation testing for HTR technology at the High Flux Reactor in Petten, J.A. Vreeling and J. van der Laan Camparison of 3 MeV C vion-irradiated graphite waste, M. Lastihiotokis, B. Marsden, J. Marrow Application of the prediction of the prediction of stresses in irradiated misotropic graphite components, K. M. Bradford and A.G. Steer Development of a Young's modulus model for the prediction of stresses in irradiated anisotropic graphite components, K. D. Eason, G.N. Hall, B. Marsden, M.R. Bradford and A.G. Steer Development of a Young's modulus model for chall and B.J. Marsden and G.B. Heys Microstructural characterisation of nuclear graphite and B.J. Marsden and G.B. Heys Microstructural characterisation of nuclear graphite materials, L. Snead A Commulation of thermal resistance in neutron irradiated graphite materials, JA. Ware graphite, T. Bardad and material properties of	Comparison of the oxidation rate and degree of graphitization of			
A revised description of graphite irradiation induced creep, M.A. Davies and M. Bradford A revised description of graphite irradiation induced creep, M.A. Davies and M. Bradford A revised creep behavior of Halfs graphite, T.D. Burchell and V. Katoh Dimensional and material property changes to irradiated Gilsocarbon graphite irradiation temperature, L.L. Snead, T.D. Burchell and V. Katoh Dimensional and material property changes to irradiated Gilsocarbon graphite irradiation temperature, L.L. Snead, T.D. Burchell and V. Katoh Can Hall, O. Wouters, J.A. Vreeling and J. van der Laan Graphite irradiation testing for HTR technology at the High Flux Reactor in Petten, J.A. Vreeling, O. Wouters and J.G. van der Laan Accumulation of thermal resistance in neutron irradiated graphite materials, L.L. Snead Application of an independent parallel reactions model on the annealing kinetics to irradiated graphite waste, M. Lasithiotakis, B. Marsden, J. Marrow and A. Willets Effects of ion irradiation on the hardness properties of graphites and C/C composites by indentation tests, T. Oku, A. Kurumada, Y. Imamura and M. Ishihara CCOMparison of 3 MeV C' ion-irradiation effects between the nuclear graphites made of pitch and petroleum cokes, SH. Chi and G-C. Kim Groppistes by indentation effects between the nuclear graphites made of pitch and petroleum cokes, SH. Chi and G-C. Kim Groppistes by indentation effects between the nuclear graphites made of pitch and petroleum cokes, SH. Chi and G-C. Kim Effects of ion irradiation composites by indentation effects between the nuclear graphites made of pitch and petroleum cokes, SH. Chi and G-C. Kim Find or graphite irradiation effects between the nuclear graphite and highly oriented pyrolytic graphite omponents, D.K.L. Tsang and irradiated anisotropic graphite components, D.K.L. Tsang and irradiated anisotropic graphite components, D.K.L. Tsang and irradiated graphite environments, E.D. Eason, G.N. Hall, B.J. Marsden Structurally-based model of redisocated in inert	Practical aspects for characterizing air oxidation of graphite, C.I. Contescu, S. Azad, D. Miller, M.J. Lance, F.S. Baker and		heterogeneous graphite, C. Berre, P.M. Mummery, B.J. Marsden,	124
A structurally-based model of irradiated graphite properties, M.R. Bradford and A.G. Steer Section 2. Irradiation behavior of graphite A revised description of graphite irradiation induced creep, M.A. Davies and M. Bradford 398. Irradiation induced creep behavior of H-451 graphite, T.D. Burchell 399. Swelling of nuclear graphite and high quality carbon fiber composite under very high irradiation temperature, L.L. Snead, T.D. Burchell and Y. Katoh 390. Dimensional and material property changes to irradiated Gilsocarbon graphite irradiated between 650 and 750 °C, B.J. Marsden, G.N. Hall, O. Wouters, J.A. Vreeling and J. van der Laan 399. Gan, Hall, O. Wouters, J.A. Vreeling, O. Wouters and J.G. van der Laan 390. A structurally-based model of irradiated graphite sirradiated in inert environments, E.D. Eason, G.N. Hall, B.J. Marsden and G.B. Heys 390. Microstructural characterisation of nuclear grade graphite, A.N. Jones, G.N. Hall, M. Joyce, A. Hodgkins, K. Wen, T.J. Marrow and B.J. Marsden 391. Marsden 392. Can. Hall, M. Joyce, A. Hodgkins, K. Wen, T.J. Marrow and B.J. Marsden 393. Marsden 394. Chall, O. Wouters, J.A. Vreeling and J. van der Laan 395. A structurally-based model of irradiated graphite sirradiated in inert environments, E.D. Eason, G.N. Hall, B.J. Marsden 396. Microstructural characterisation of nuclear graphite using an inverse method, L. Lin, H. Li, A.S.L. Fok, M. Joyce and J. Marrow 398. Marsden 399. Chall, M. Joyce, A. Hodgkins, K. Wen, T.J. Marrow 399. Microstructural characterisation of heterogeneity and nonlinearity in material properties of nuclear graphite using an inverse method, L. Lin, H. Li, A.S.L. Fok, M. Joyce and J. Marrow 399. Can. Hall, M. Joyce, A. Hodgkins, K. Wen, T.J. Marrow 390. Hall, M. Joyce and J. Marrow 391. Marsden 391. Marsden 392. Can. Hall, M. Joyce, A. Hodgkins, K. Wen, T.J. Marrow 393. Marsden 394. Can. Hall, M. Joyce and J. Marrow 395. Marsden 396. Characterization of heterogeneity and nonlinearity in material 399. Characterization of het	A novel approach to fabricating fuel compacts for the next generation nuclear plant (NGNP), P.J. Pappano, T.D. Burchell, J.D. Hunn		Constitutive material model for the prediction of stresses in irradiated anisotropic graphite components, D.K.L. Tsang and	
irradiated in inert environments, E.D. Eason, G.N. Hall, B.J. Marsden and G.B. Heys M.A. Davies and M. Bradford Swelling of nuclear graphite and high quality carbon fiber composite under very high irradiation temperature, L.L. Snead, T.D. Burchell and Y. Katoh Dimensional and material property changes to irradiated Gilsocarbon graphite irradiated between 650 and 750 °C, B.J. Marsden, G.N. Hall, O. Wouters, J.A. Vreeling and J. van der Laan Graphite irradiation testing for HTR technology at the High Flux Reactor in Petten, J.A. Vreeling, O. Wouters and J.G. van der Laan Accumulation of thermal resistance in neutron irradiated graphite materials, L.L. Snead Application of an independent parallel reactions model on the annealing kinetics to irradiated graphite waste, M. Lasithiotakis, B. Marsden, J. Marrow and A. Willets Effects of ion irradiation tests, T. Oku, A. Kurumada, Y. Imamura and M. Ishihara Effects of ion irradiation tests, T. Oku, A. Kurumada, Y. Imamura and M. Ishihara Figraphites made of pitch and petroleum cokes, SH. Chi and G.C. Kim GC. Kim Edicator in Petten, J.A. Vreeling and J. van der Laan Application of an independent parallel reactions model on the annealing kinetics to irradiated graphite waste, M. Lasithiotakis, B. Marsden, J. Marrow and A. Willets Section 4. Non-destructive graphite testing methods and fracture Non-destructive evaluation methods for degradation of IG-110 and IG-430 graphite, T. Shibata, J. Sumita, T. Tada, S. Hanawa, K. Sawa and T. Iyoku Microstructural characterisation of nuclear graphite using an inverse method, L. Lin, H. Li, A.S.L. Fok, M. Joyce and J. Marrow 152 Section 4. Non-destructive graphite testing methods and fracture IG-430 graphite, T. Shibata, J. Sumita, T. Tada, S. Hanawa, K. Sawa and T. Iyoku Microstructural characterisation of nuclear graphite, N. J. Marrow and J. Willets Microstructural characterisation of nuclear graphite, N. J. Marrow and J. Willets Microstructural cale strain localisation in nuclear graphite on evaluation met		25	A structurally-based model of irradiated graphite properties, M.R. Bradford and A.G. Steer	
M.A. Davies and M. Bradford M. Bradford M. Bradford Swelling of nuclear graphite and high quality carbon fiber composite under very high irradiation temperature, L.L. Snead, T.D. Burchell and Y. Katoh Dimensional and material property changes to irradiated Gilsocarbon graphite irradiated between 650 and 750 °C, B.J. Marsden, G.N. Hall, O. Wouters, J.A. Vreeling and J. van der Laan Graphite irradiation testing for HTR technology at the High Flux Reactor in Petten, J.A. Vreeling, O. Wouters and J.G. van der Laan Application of an independent parallel reactions model on the annealing kinetics to irradiated graphite waste, M. Lasithiotakis, B. Marsden, J. Marrow and A. Willets Effects of ion irradiation on the hardness properties of graphites and C.C. C. Kim G.C. Kim G.A. Hall, M. Joyce, A. Hodgkins, K. Wen, T.J. Marrow and B.J. Marsden Soction 4. Non-destructive graphite testing methods and fracture Section 4. Non-destructive graphite testing methods and fracture Non-destructive evaluation methods for degradation of IG-110 and IG-430 graphite, T. Shibata, J. Sumita, T. Tada, S. Hanawa, K. Sawa and T. Iyoku Microstructural characterisation of nuclear graphite, A.N. Jones, G.N. Hall, M. Joyce, A. Hodgkins, K. Wen, T.J. Marrow and B.J. Marsden 152 Section 4. Non-destructive graphite testing methods and fracture Non-destructive evaluation methods for degradation of IG-110 and IG-430 graphite, T. Shibata, J. Sumita, T. Tada, S. Hanawa, K. Sawa and T. Iyoku Microstructural characterisation of nuclear graphite using an inverse method, L. Lin, H. Li, A.S.L. Fok, M. Joyce and J. Marrow Section 4. Non-destructive graphite testing methods and fracture Non-destructive evaluation methods for degradation of IG-110 and IG-430 graphite, T. Shibata, J. Sumita, T. Tada, S. Hanawa, K. Sawa and T. Iyoku An innovative technique for evaluating fracture toughness of graphite materials, JAJ. Wang and K.C. Liu On estimation of harding fracture probability of nuclear graphite components, M. Srinivasan Microstructura			irradiated in inert environments, E.D. Eason, G.N. Hall, B.J. Marsden	145
Swelling of nuclear graphite and high quality carbon fiber composite under very high irradiation temperature, <i>L.L. Snead, T.D. Burchell and Y. Katoh</i> Dimensional and material property changes to irradiated Gilsocarbon graphite irradiated between 650 and 750 °C, <i>B.J. Marsden, G.N. Hall, O. Wouters, J.A. Vreeling and J. van der Laan</i> Graphite irradiation testing for HTR technology at the High Flux Reactor in Petten, <i>J.A. Vreeling, O. Wouters and J.G. van der Laan</i> Accumulation of thermal resistance in neutron irradiated graphite materials, <i>L.L. Snead</i> Application of an independent parallel reactions model on the annealing kinetics to irradiated graphite waste, <i>M. Lasithiotakis, B. Marsden, J. Marrow and A. Willets</i> Effects of ion irradiation on the hardness properties of graphites and <i>C/C</i> composites by indentation tests, <i>T. Oku, A. Kurumada, Y. Imamura and M. Ishihara</i> Comparison of 3 MeV C ⁺ ion-irradiation effects between the nuclear graphite made of pitch and petroleum cokes, <i>SH. Chi and GC. Kim</i> The origins and use of the equivalent temperature concept, <i>E.D. Eason, G. Hall, G.B. Heys, J.F. Knott, B.J. Marsden, S.D. Preston</i> Section 4. Non-destructive graphite testing methods and fracture Section 4. Non-destructive graphite testing methods and fracture Non-destructive evaluation methods for degradation of IG-110 and IG-430 graphite, <i>T. Shibata, J. Sumita, T. Tada, S. Hanawa, K. Sawa and T. Iyoku</i> An innovative technique for evaluating fracture toughness of graphite materials, <i>JA.J. Wang and K.C. Liu</i> On estimating the fracture probability of nuclear graphite components, <i>M. Srinivasan</i> Microstructural scale strain localisation in nuclear graphite components, <i>M. Srinivasan</i> Microstructural scale strain localisation in nuclear graphite on graphite materials, <i>JA.J. Wang and K.C. Liu</i> On estimating the fracture probability of nuclear graphite components, <i>M. Srinivasan</i> Microstructural scale strain localisation in nuclear graphite on graphite materials, <i>JA.J. Wang and K.C.</i>	M.A. Davies and M. Bradford		Microstructural characterisation of nuclear grade graphite, A.N. Jones,	113
Dimensional and material property changes to irradiated Gilsocarbon graphite irradiated between 650 and 750 °C, B.J. Marsden, G.N. Hall, O. Wouters, J.A. Vreeling and J. van der Laan Graphite irradiation testing for HTR technology at the High Flux Reactor in Petten, J.A. Vreeling, O. Wouters and J.G. van der Laan Accumulation of thermal resistance in neutron irradiated graphite materials, L.L. Snead Application of an independent parallel reactions model on the annealing kinetics to irradiated graphite waste, M. Lasithiotakis, B. Marsden, J. Marrow and A. Willets Effects of ion irradiation on the hardness properties of graphites and C/C composites by indentation tests, T. Oku, A. Kurumada, Y. Imamura and M. Ishihara COMMITTER CONTROL OF SECTION 1. Non-destructive graphite testing methods and fracture Section 4. Non-destructive graphite testing methods and fracture Non-destructive evaluation methods for degradation of IG-110 and IG-430 graphite, T. Shibata, J. Sumita, T. Tada, S. Hanawa, K. Sawa and T. Iyoku Microstructural scale strain localisation in nuclear graphite, M.R. Joyce and J. Marrow An innovative technique for evaluating fracture toughness of graphite materials, JA.J. Wang and K.C. Liu 177 On estimating the fracture probability of nuclear graphite components, M. Srinivasan Microcracks in nuclear graphite and highly oriented pyrolytic graphite (HOPG), K. Wen, J. Marrow and B. Marsden 185 186 Section 4. Non-destructive graphite testing methods and fracture 187 Non-destructive evaluation methods for degradation of IG-110 and IG-430 graphite, T. Shibata, J. Sumita, T. Tada, S. Hanawa, K. Sawa and T. Iyoku 187 M.R. Joyce and J. Marrow An innovative technique for evaluating fracture toughness of graphite materials, JA.J. Wang and K.C. Liu 188 Microstructural scale strain localisation in nuclear graphite of graphite materials, JA.J. Wang and K.C. Liu 189 On estimating the fracture probability of nuclear graphite components, M. Srinivasan Microstructural scale strain localisatio	Swelling of nuclear graphite and high quality carbon fiber composite under very high irradiation temperature, L.L. Snead, T.D. Burchell		Characterization of heterogeneity and nonlinearity in material	152
Graphite irradiation testing for HTR technology at the High Flux Reactor in Petten, J.A. Vreeling, O. Wouters and J.G. van der Laan Accumulation of thermal resistance in neutron irradiated graphite materials, L.L. Snead Application of an independent parallel reactions model on the annealing kinetics to irradiated graphite waste, M. Lasithiotakis, B. Marsden, J. Marrow and A. Willets Effects of ion irradiation on the hardness properties of graphites and C/C composites by indentation tests, T. Oku, A. Kurumada, Y. Imamura and M. Ishihara Comparison of 3 MeV C ⁺ ion-irradiation effects between the nuclear graphites made of pitch and petroleum cokes, SH. Chi and GC. Kim The origins and use of the equivalent temperature concept, E.D. Eason, G. Hall, G.B. Heys, J.F. Knott, B.J. Marsden, S.D. Preston fracture Non-destructive evaluation methods for degradation of IG-110 and IG-430 graphite, T. Shibata, J. Sumita, T. Tada and Non-destructive evaluation methods for degradation of IG-110 and IG-430 graphite, T. Shibata, J. Sumita, T. Tada and Non-destructive evaluation methods for degradation of IG-110 and IG-430 graphite, T. Shibata, J. Sumita, T. Tada, S. Hanawa, K. Sawa and T. Iyoku Microstructural scale strain localisation in nuclear graphite, M.R. Joyce and T.J. Marrow graphite materials, JA.J. Wang and K.C. Liu On estimating the fracture probability of nuclear graphite components, M. Srinivasan Microcracks in nuclear graphite and highly oriented pyrolytic graphite (HOPG), K. Wen, J. Marrow and B. Marsden 185 Development of non-destructive evaluation methods for degradation of HTGR graphite components, T. Shibata, J. Sumita, T. Tada and	Dimensional and material property changes to irradiated Gilso-	55		158
Accumulation of thermal resistance in neutron irradiated graphite materials, <i>L.L. Snead</i> Application of an independent parallel reactions model on the annealing kinetics to irradiated graphite waste, <i>M. Lasithiotakis</i> , <i>B. Marsden, J. Marrow and A. Willets</i> Effects of ion irradiation on the hardness properties of graphites and <i>C/C</i> composites by indentation tests, <i>T. Oku, A. Kurumada</i> , <i>Y. Imamura and M. Ishihara</i> Comparison of 3 MeV C ⁺ ion-irradiation effects between the nuclear graphites made of pitch and petroleum cokes, <i>SH. Chi and GC. Kim</i> The origins and use of the equivalent temperature concept, <i>E.D. Eason, G. Hall, G.B. Heys, J.F. Knott, B.J. Marsden, S.D. Preston</i> Non-destructive evaluation methods for degradation of IG-110 and IG-430 graphite, <i>T. Shibata, J. Sumita, T. Tada, S. Hanawa, K. Sawa and T. Iyoku</i> 165 Microstructural scale strain localisation in nuclear graphite, <i>M.R. Joyce and T.J. Marrow</i> 171 An innovative technique for evaluating fracture toughness of graphite materials, <i>JA.J. Wang and K.C. Liu</i> 177 On estimating the fracture probability of nuclear graphite components, <i>M. Srinivasan</i> 185 Microstructive evaluation methods for degradation of IG-110 and IG-430 graphite, <i>T. Shibata, J. Sumita, T. Tada, S. Hanawa, K. Sawa and T. Iyoku</i> 171 An innovative technique for evaluating fracture toughness of graphite materials, <i>JA.J. Wang and K.C. Liu</i> 177 92 On estimating the fracture probability of nuclear graphite oments, <i>M. Srinivasan</i> 185 Microstructive evaluation methods for degradation of IG-110 and IG-430 graphite, <i>T. Shibata, J. Sumita, T. Tada, S. Hanawa, K. Sawa and T. Iyoku 171 An innovative technique for evaluating fracture toughness of graphite materials, <i>JA.J. Wang and K.C. Liu</i> 177 92 On estimating the fracture probability of nuclear graphite oments, <i>M. Srinivasan</i> 185 Microstructural scale strain localisation in nuclear graphite, <i>M.R. Joyce and T.J. Wang and K.C. Liu</i> 177 Publication of the and the probability of nuclear graphit</i>	Graphite irradiation testing for HTR technology at the High Flux			
nealing kinetics to irradiated graphite waste, <i>M. Lasithiotakis</i> , <i>B. Marsden, J. Marrow and A. Willets</i> 83 Microstructural scale strain localisation in nuclear graphite, <i>M.R. Joyce and T.J. Marrow</i> 171 An innovative technique for evaluating fracture toughness of graphite materials, <i>JA.J. Wang and K.C. Liu</i> 177 Y. Imamura and M. Ishihara 92 On estimating the fracture probability of nuclear graphite components, <i>M. Srinivasan</i> 185 Microstructural scale strain localisation in nuclear graphite, <i>M.R. Joyce and T.J. Marrow</i> 170 On estimating the fracture probability of nuclear graphite components, <i>M. Srinivasan</i> 185 Microstructural scale strain localisation in nuclear graphite, <i>M.R. Joyce and T.J. Marrow</i> 178 On estimating the fracture probability of nuclear graphite components, <i>M. Srinivasan</i> 185 Microstructural scale strain localisation in nuclear graphite, <i>M.R. Joyce and T.J. Marrow</i> 178 On estimating the fracture probability of nuclear graphite components, <i>M. Srinivasan</i> 189 Microstructural scale strain localisation in nuclear graphite, <i>M.R. Joyce and T.J. Marrow</i> 170 On estimating the fracture probability of nuclear graphite components, <i>M. Srinivasan</i> 185 Microstructural scale strain localisation in nuclear graphite, <i>M.R. Joyce and T.J. Marrow</i> 179 On estimating the fracture probability of nuclear graphite components, <i>M. Srinivasan</i> 185 Microstructural scale strain localisation in nuclear graphite, <i>M.R. Joyce and T.J. Marrow</i> 179 On estimating the fracture probability of nuclear graphite components, <i>M. Srinivasan</i> 185 Microstructural scale strain localisation in nuclear graphite, <i>M.R. Joyce and T.J. Marrow</i> 177 On estimating the fracture probability of nuclear graphite components, <i>M. Srinivasan</i> 185 Microstructural scale strain localisation in nuclear graphite, <i>M.R. Joyce and T.J. Marrow</i> 170 On estimating the fracture probability of nuclear graphite omponents, <i>M. Srinivasan</i> 185 Microstructural scale strain localisation in nuclear graphite, <i>M.R. Joyce and T.J. Marrow</i>	Accumulation of thermal resistance in neutron irradiated graphite materials, <i>L.L. Snead</i>		IG-430 graphite, T. Shibata, J. Sumita, T. Tada, S. Hanawa, K. Sawa	
Effects of ion irradiation on the hardness properties of graphites and C/C composites by indentation tests, <i>T. Oku, A. Kurumada, Y. Imamura and M. Ishihara</i> Comparison of 3 MeV C ⁺ ion-irradiation effects between the nuclear graphites made of pitch and petroleum cokes, <i>SH. Chi and GC. Kim</i> The origins and use of the equivalent temperature concept, E.D. Eason, G. Hall, G.B. Heys, J.F. Knott, B.J. Marsden, S.D. Preston An innovative technique for evaluating fracture toughness of graphite materials, JAJ. Wang and K.C. Liu 177 On estimating the fracture probability of nuclear graphite components, M. Srinivasan 185 Microcracks in nuclear graphite and highly oriented pyrolytic graphite (HOPG), K. Wen, J. Marrow and B. Marsden 199 Development of non-destructive evaluation methods for degradation of HTGR graphite components, T. Shibata, J. Sumita, T. Tada and	nealing kinetics to irradiated graphite waste, M. Lasithiotakis,	02	Microstructural scale strain localisation in nuclear graphite,	
Comparison of 3 MeV C ⁺ ion-irradiation effects between the nuclear graphites made of pitch and petroleum cokes, <i>SH. Chi and GC. Kim</i> The origins and use of the equivalent temperature concept, <i>E.D. Eason, G. Hall, G.B. Heys, J.F. Knott, B.J. Marsden, S.D. Preston</i> 185 Microcracks in nuclear graphite and highly oriented pyrolytic graphite (HOPG), <i>K. Wen, J. Marrow and B. Marsden</i> 199 Development of non-destructive evaluation methods for degradation of HTGR graphite components, <i>T. Shibata, J. Sumita, T. Tada and</i>	Effects of ion irradiation on the hardness properties of graphites and	83	An innovative technique for evaluating fracture toughness of graphite materials, JA.J. Wang and K.C. Liu	
GC. Kim 98 graphite (HOPG), K. Wen, J. Marrow and B. Marsden 199 The origins and use of the equivalent temperature concept, E.D. Eason, G. Hall, G.B. Heys, J.F. Knott, B.J. Marsden, S.D. Preston 98 graphite (HOPG), K. Wen, J. Marrow and B. Marsden Development of non-destructive evaluation methods for degradation of HTGR graphite components, T. Shibata, J. Sumita, T. Tada and	Comparison of 3 MeV C ⁺ ion-irradiation effects between the nuclear	92	nents, M. Srinivasan	185
	GC. Kim The origins and use of the equivalent temperature concept,	98	graphite (HOPG), K. Wen, J. Marrow and B. Marsden Development of non-destructive evaluation methods for degradation	199
		106		204